IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On matrix product ground states for reaction - diffusion models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 2643
(http://iopscience.iop.org/0305-4470/29/11/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:52

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 2643-2649. Printed in the UK

On matrix product ground states for reaction—diffusion
models

Haye Hinrichsef, Sven Sandoyand Ingo Peschi]

1 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100,
Israel

1 Max-Planck-Institut @ir Physik komplexer Systeme, Bayreuther Strasse 40, Haus 16,

01187 Dresden, Germany

Received 24 October 1995

Abstract. We discuss a new mechanism leading to a matrix product form for the stationary
state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves
four different matrices. For the example of a coagulation—decoagulation model explicit four-
dimensional representations are given and exact expressions for various physical quantities are
recovered. We also find the general structurengioint correlation functions at the phase
transition.

Even for complicated one-dimensional many-particle models, the ground state can have a
simple form. In spin problems it may be the tensor product of factors referring to single
sites. While the correlations in this case are trivial, this is not so for a generalization where
the product state is formed using matrices [1-5]. It has been found that the ground state of
certain spin-one models and the stationary state for classical particles diffusing between two
reservoirs have such a form. Excited states have also been described by the same ansatz [6].
So far, however, only diffusive systems have been treated successfully in this way. It is the
aim of the present paper to show that the approach also works for more general situations.
As an example, a particular reaction—diffusion model will be studied.

We consider a stochastic two-state model on a one-dimensional latticeMvitites.
Its configurations are defined by the occupation numbers,, ..., ty each of which can
take values 0 and 1. We say the system has a matrix product ground state if its stationary
probability distributionPy(z1, 72, ..., Ty) can be written as

N
Po(t1. T2 ... tn) = Zy S (W [ (@D + A= 1)E)|V) @)
j=1
where E and D are square matrices and| and |V) are vectors acting in an auxiliary
space. Zy is a normalization constant defined @y = (W|(D + E)Y|V). The matrix
product in (1) can be written formally as a tensor product so that the stationary Biate
represented as a vector in configuration space is given by

N
|Po) = Zy "t (W] (,’3) V). )
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The matrix product representation is a powerful tool, since various physical quantities like
the particle density
J=lpcN-J
(Tj)n = <W|fW|CNC|V) v with C=D+E. 3)
can be computed directly. Correlation functions are given by similar expressions in which
C plays the role of a transfer matrix.

The matrices used for the above ansatz may by finite or infinite dimensional [2, 4].
We are going to study an example for the first case below. The fact that the probability
distribution of some system is given by a product of finite-dimensional matrices has far
reaching consequences. Depending on the properties of the r@atcorrelation functions
in such systems can have two forms which we want to discuss briefly at this point. Suppose
first that thed-dimensional matri>xC is diagonalizable and has eigenvalugs. .., 1, with
A < A2 < --- < Ag1 < Ag. Then anyn-point correlation function can be written as

d—1
(ThT, Ty = Y en({o!')) eXP{— > E)H = Dol + (o — o — Doy
n=1

{UiM}

+(s = j2 = Doz + -+ (u = ju-1— Do + (N — jn)U,fﬁrl]} 4)

where the first sum runs over al = 0,1 under the restrictiory %} o/ < 1. The
quantities &, = {Iog()\d/)m)}‘l are the correlation lengths. They({o;}) are some
coefficients which depend on the system sizeand approach constant values fér>>> 1.

All correlations depend exponentially on the distances involved [4] and the number of length
scales equals the number of different eigenvalue§ ofinus one.

The situation changes {f is not diagonalizable. In this case the matrix can be classified
according to its Jordan normal form. As long as the Jordan blhgk of the largest
eigenvalue is one-dimensional, the correlation functions again decay exponentially (the only
difference to equation (4) is that algebraic prefactors to the exponentials may occur). On
the other hand, if the dimensidrof Jya is larger than one, the correlations are dominated
by algebraic terms with positive powers. One can easily show thai-fhant correlation
functions are given by

(TiTp - Tin = Z [en(oih) (i — DTGz = j1 — D2z — ja = D
{0;=0,....1-1}
X+ X (Jp— Jaez— D" (N — j,,)""“] + exponential terms (5)

Here thecy({o;}) are coefficients, the largh- asymptotics of which are generically
proportional toN~¢~Y. The exponential terms are of type (4) with algebraic prefactors
and are generally negligible for large distangeS(j> — j1), ..., (n — ju—1), (N — j,) > 1.

The correlations (5) are completely different from those in a system with diagonaliZable
They involve the powers,@, 2, ...,[ — 1 of the distances. Only in special cases where all
the cy ({0;}) vanish are the correlations of type (4). It is worth mentioning another special
case: ifl = 2 and the elemenD, ,_1 of the matrix D is zero, then allcy ({o;}) with
more than one; equal to 1 vanish, i.e. the correlation functions are linear in the positions
J1. -+ - ju- Ifin addition D, ; = 0, the algebraic part of the correlation function depends on
the arguments$N — j,) andN only, i.e.(t;, 7, --- 7;, )~y = ¢ (1— j,/N) +exponential terms

for N > 1 and(N — j,) > 1 wherec’ is some constant. Let us also note that the stationary
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correlations of any system with a ground state (1) containing finite-dimensional matrices do
not involve negative or non-integer powers of the distances.

Up to now, matrix product ground states have been encountered in two situations.
The first is found for models with the Hamiltonial# = > _; &; ;11 in which the two-site
interaction itself already annihilates the ground state, kg;1|0) = 0. Here the algebra
of the operatorgZ and D is given by

[(5)e(5)]

An example for this type of model is the spin-1 antiferrromagnet discussed in [1]. The
second case is realized in models with open boundaries and particle input and output
at the ends of the chain. These models are described by a time evolution operator
H=Y/"h+h + 1 whereh® andh® are 2x 2 matrices for particle input

and output. Here the basic mechanism of the matrix product ground state relies on the fact
that application ofs; ;1 yields a divergence-like term on the right-hand side:

AG)e(5)]=(2)=(5) - (5)=(2) 2

wheree and d are numbers, normally = —d = 1. Summing over the two-particle
interactions, all these contributions cancel in the bulk of the chain. The remaining terms at
the boundaries are cancelled by a proper choice of the ve@iorand |V):

<W|h(”(,€)=—<W|<fl) h(R>(§)|V>=<§)|V> (®)

so thatH|0) = 0. The most important two-state model of this type is the asymmetric
exclusion process with external particle input and output [2—4, 6]. There are also three-state
models to which the matrix product ansatz has been applied [5]. But, as mentioned in the
beginning, all known examples are diffusive systems.

The generalization which we are going to use, consists in replacing the nuenapds
d by matricesk and D. The idea goes back to [6] where the special cse D = 0 was
introduced in order to solve the time evolution of the asymmetric diffusion model in one
dimension. The generalized algebra

(5)e(5)]=(5)2(5)-(5)=(5) ®
<W'h(L)<g>=_<W'(§> h(m(g)'”:(g)'w (10)

is quadratic on both the left- and right-hand sides. In contrast to the usual matrix ansatz (7)
the generalized ansatz (9) can be applied to systems which include particle reactions.

As an example we consider the asymmetric coagulation—decoagulation model. In this
model particles diffuse on a linear chain. When two of them meet, they can merge
(coagulate) to a single one. In the same way a single particle can split up (decoagulate)
into two particles. Assuming no particle input and output, we therefore have six different
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processes:
diffusion to the left: D+A—> A+ with rate a;
diffusion to the right: A+0— 0D+ A with rate ag
coagulation at the left; A+A—> A+ with rate ¢,
coagulation at the right: A+A—> 0+ A with rate cg

decoagulation to the left: W+A—>A+A with rate d
decoagulation to the right: A+0—> A+ A with rate dg

In what follows we consider the special choieg = ¢, = g, ag = cg = q~ %, d. = Ag

anddz = Ag~! where the diffusion and coagulation rates coincide and all reactions have
the same bias in one spatial direction. Since in this case the model can be mapped on
a free fermion model, it is integrable and various exact results have been obtained [7—
9]. The model is controlled by two parameters, namely the asymmetry paragneiea

the effective decoagulation rats. Its phase diagram shows two phases, a low-density
phase forA < ¢g? — 1 and a high-density phase far > g% — 1. At the phase transition

point A = ¢? — 1, the gap in the relaxational spectrum vanishes and algebraic long-range
correlations can be observed [9]. In a bagig, ¥A, A, AA) the two-site term in the time
evolution operatoi = Z]’.V:’ll h;j j+1 reads

0 0 0 0
Lo | 0 (A+Dg —q* ) —q* . (11)
0 —q (A+Dgt —g
0 -—Aq -Aq7t g+q7t
Therefore the bulk algebra (9) is given by
0=EE - EE (12)
(A+1)gED — ¢ 'DE — ¢"'DD=ED - ED (13)
—qED + (A+1)¢ 'DE — ¢DD = DE — DE (14)
~AgED — Aq'DE + (g+q¢ DD =DD - DD (15)
and the boundary conditions (10) read
(W|E=(W|D=E|V)=D|V)=0. (16)
Writing C = E + D, C =E + D andy? = A + 1, the algebra (12)—(15) simplifies to
[C,C1=[E,E]=0 (17)
EC—EC=W%q+q YEC — y?gEE — g7 tcCC (18)
CE—CE = (y’q"*4+¢)CE — y>¢"*EE — g CC. (19)

In contrast to algebras for diffusive systems (7)—(8), the above commutation relations do not
allow the number of factors in a given product of matrices to be reduced. Therefore products
of different lengths are independent. Products of the same length, which correspond to a
given system size, obey linear relations as follows. For a given productC EG.EE, we
compute the differenc€ ECEE — C ECEE by using the commutation relations (17)—(19).
Writing (W|---|V) = (---) and using{CECEE) = (CECEE) = 0 one obtains

— — — -1 -
(CECEE) = (v’ " +v*q+a D+ @+a ™ +q) " [v2 NEECEE)

+y%(q +q Y (CEEEE) + (¢ + ¢~Y) (CCCEE) + q(CECCE)] . (20)
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In general, if{P", i € 1,..., Ni} is the subset of products witN factors containing
matricesC, linear relations of this type have the form
Niy1 Ng-1
(P =D e TP 4 YT k=1 N =), (21)
= =

As can be seen from the commutation relations, the coefficigrts" obey

Nkil Nk+m
0< ™ <l 0<) <1 YD =1 (22
j=1 m==%1 j=1

Therefore by iterating equation (21) one gets more and more complicated linear expressions
with positive coefficients which involve all subsdis=0, ..., N. Since there are no such
relations fork = 0 andk = N, one finally ends up with only two contributions:

Py = a®™(EV)y + (1 —a®) (C") 0<a® <1, (23)

The expectation value¢E™) and (CV) are independent. Therefore the vector space of
words Pi(") of a given length decomposes into two subspaces in which the expectation
values are proportional taE™) or (C"), respectively. Consequently physical observables
are parametrized by the ratio:= (EV)/(C"). This is related to the fact that the model
has two independent ground states, a trivial one which is the empty lattieel) and a
non-trivial one where patrticles are preseht£ 0).

A trivial representation of the above algebra (16)—(19Fis= C =1, E=C =0
which describes a system without particles. In the symmetric gasel there also is a
second one-dimensional representatior= 1, C = y?, E = C = 0 corresponding to a
factorized ground state with finite particle density (1 + A). In the general casg # 1
the model is known to involve three different length scales, and therefore any non-trivial
representation of the algebra has a dimensiop 4. Furthermore representations of the
algebra may be different in each sector so that they may depend explicittfyard 1. We
found a four-dimensional representation which is given by

g% g% 0 0 g2 ¢g2 0 0
0 y2 y2 0 0 1 1 0

E]_ = 2 Cl - 2 2
0 0 1 ¢ 0 0 vy ¢
0 0 0 42 0 0 0 42
00 gt (gt-¢t

_ 00 q— q’l —q

E,= i
0 0 A(g—9g™) —Agq (24)
00 0 0
0 -—Ag?t gt @rt-97t

_ 0 Alg'—q) g—q* —q

C,=
0 0 0 0
0 0 0 0

(Wil =(1-4¢% 1, 0, a) V1) = (b, 0, 4% ¢*-1)

where
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ea— g = @@=y + ) VG2 -2+ 1) — gD (g2y2i - 1)
V2 =2 —q > —q7?)

D@ D@ g -y =y
r-1 ¥?=a?=a72@* —q7 '

N (25)

The caseA # > — 1. For practical purposes it is desirable to have a representation in
which the matrixC is diagonal. ForA # g2 — 1 an appropriate similarity transformation
yields

9% ¢?—y? ¢*-1 ¢*(1-y? q?
0 -2 0 2_q42 1
Bz = : ; 261 C2= 2
0 0 1 yig =D Y
0 0 0 0 2
q q (26)
Wl :< 1 0o ¢ a@® =g’ =q?y* - qzyz)
1-q?y?" 7 q%y?2-1’ (¥2— D@+ 1

bq*—=D@**-D+4q* **-1  (y*—Dq?
V2) = 2 . 0, 2_ .2 ° 4_.22)"
9°+1 Ye—q Yt —v4a
Using this representation, it is easy to derive the particle density (3) in the seetd).

(P2 =D+@2=Dy2qr)Y) — ¢ (2= Dg?> ¥ +(*~D(q/v) %)
VZ ()/ZN—H/*ZN _qZN _q72[\/)

(Ti)n =
(27)

which coincides with the result obtained in [9]. We also checked that the two-point
correlation functior(r; t;) vy is obtained correctly.

The caseA = g% — 1 (q> 1). Here the two largest eigenvalues of the matiixnamely
1+ A andg?, coincide andC is not diagonalizable. We therefore choose a representation
whereC has Jordan normal form

4 -2 2
2 2_g2 g2_q 9 T4 —2"
a7 ¢°-q7% ¢ 1
0 -2 0 -2
Ea= ! 1q+2 2
0 0 1 _-v4
1+42
0 0 0 e
g2 0 0 0 (28)
- 0 1 0 o0
1 0 o0 4 1

0 0 0 42
(Wal = (¢72=1,0, ¢*~1, 1+al—¢7?)
IVa) = (1+b(*—q7%. 0, -1, ¢°—q7?)
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where
L)\.(qZL _ q—ZL) q2L _ q—ZL
2N —2N —2L
a— b=——— - — L - . 29
q q Y q PR (29)
Using this representation, the density at a git@ the secton. = 0 is easily obtained as

AN

(Ti)ny = ngvi_l {]]\} + (1_‘1_2) (1_ ](I) +aY [(qz_ Y (1_ 1]\’> - ]]\}:H
(30)

which agrees with the result from [9]. There is no term proportional to— 1) or
(j — 1)(N — j) because ofDs3 = Dss = 0 (see equation (28)). It turns out that any
n-point correlation function(z;,7;, - - - 7;,)» depends only on the two positions and j,.
According to our discussion at the beginning of this paper, its algebraic part is a linear
function in j, only. In fact it is given by

q4N _oyn—1 _ jn 1
A {(1—q 2) (1_N)+N} .
The exponential part ofiz;z;,---7;, )y decays withj; on length scales2logq)~?,
(4logg)~* and with j, on the length scal€2logqg) .

While an ansatz of type (1) with an algebra (9), (10) can be made for any one-
dimensional reaction—diffusion model, it is not clear under which conditions a matrix
representation really exists. In particular, we do not know if the existence of representations
is related to the integrability of the system. One should therefore investigate non-integrable
examples. Also the extension to systems with open boundaries would be of interest.
However, since some open systems are known to have correlations decaying with negative
powers of the positions, the corresponding matrix representations are expected to be infinite-
dimensional.
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